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Abstract: Validation is often defined as the process of determining the degree to which a model is an
accurate representation of the real world from the perspective of its intended uses. Validation is crucial as
industries and governments depend increasingly on predictions by computer models to justify their deci-
sions. We propose to formulate the validation of a given model/code as an iterative construction process
that mimics the often implicit process occurring in the minds of scientists. We offer a formal representa-
tion of the progressive build-up of trust in the model. We thus replace static claims on the impossibility
of validating a given model/code by a dynamic process of constructive approximation. This approach is
better adapted to the fuzzy, coarse-grained nature of validation. Our procedure factors in the degree of
redundancy versus novelty of the experiments used for validation as well as the degree to which the model
predicts the observations. We illustrate the new methodology first with the maturation of Quantum Me-
chanics as the arguably best established physics theory and then with several concrete examples drawn
from some of our primary scientific interests: a cellular automaton model for earthquakes, a multifractal
random walk model for financial time series, an anomalous diffusion model for solar radiation transport in
the cloudy atmosphere, and a computational fluid dynamics code for the Richtmyer-Meshkov instability.



Introduction: Model Construction and Validation

At the heart of the scientific endeavor, model building involves a slow and arduous selection process, which
can be roughly represented as proceeding according to the following steps: (1) start from observations
and/or experiments; (2) classify them according to regularities that they may exhibit [1]; (3) use inductive
reasoning, intuition, analogies, and so on, to build hypotheses from which a model is constructed; (4) test
the model with available observations, extract predictions that are tested against new observations or by
developing dedicated experiments. The model is then rejected or refined by an iterative process, a loop
going from (1) to (4). A given model is progressively validated by the accumulated confirmations of its
predictions by repeated experimental and/or observational tests. Whereas verification deals with whether
the simulation code correctly solves the model equations, validation carries an additional degree of belief
in the value of the model vis-a-vis experiment and, therefore, may convince one to use its predictions to
explore beyond known territories [2].

The validation of models is becoming a major issue as humans are increasingly faced with decisions
involving complex tradeoffs in problems with large uncertainties, as for instance in attempts to control
the growing anthropogenic burden on the planet [3] within a risk-cost framework [4] based on predictions
of models. For policy decisions, federal, state, and local governments increasingly depend on computer
models that are scrutinized by scientific agencies to attest to their legitimacy and reliability. Cognizance
of this trend and its scientific implications is not lost on the engineering [5] and physics [6] communities.

How does one validate a model when it makes predictions on objects that are not fully replicated in the
laboratory, either in the range of variables, of parameters or of scales? Indeed, a potentially far-reaching
consequence of validation is to give the “green light” for extrapolating a body of knowledge, which is
firmly established only in some limited ranges of variables, parameters and scales. Predictive capability is
what enables us to go beyond this clearly defined domain into a more fuzzy area of unknown conditions
and outcomes. This problem has repeatedly appeared in different guises in practically all scientific fields.
A notable domain of application is risk assessment: how to quantify the potential for a catastrophic event
(earthquake, tornado, hurricane, flood, huge solar mass ejection, large bolide, industrial plant explosion,
ecological disaster, financial crash, economic collapse, etc.) of amplitude never yet sampled from the
knowledge of past history and present understanding? This is crucial, for example, in the problem of
scaling the physics of material and rock rupture tested in the laboratory to the scale of earthquakes. This is
necessary for scaling the knowledge of hydrodynamical processes quantified in the laboratory to the length
and time scales relevant to the atmospheric/oceanic weather and climate, not to mention astrophysical
systems. Perhaps surprisingly, the same problem arises in the evaluation of electronic circuits; to quote
Hefner [7]: “The problem is that there is no systematic way to determine the range of applicability of the
models provided within circuit simulator component libraries.” The example of validation of electronic
circuits is particularly interesting because it identifies the origin of the difficulties inherent in validation: the
fact that the dynamics are nonlinear and complex with threshold effects, that it does not allow for a simple-
minded analytic approach consisting in testing a circuit component by component. This same difficulty is
found in validating general circulation models of the Earth’s climate or end-to-end computer simulations
of complex engineering systems such as an aircraft or a nuclear weapon. The problem is fundamentally
due to its systemic nature. The theory of systems, sometimes referred to as the theory of complex systems,
is characterized by the expectation of surprises. The biggest one may be the phenomenon of “emergence”
in which qualitatively new processes or structures appear in the collective behavior of the system, while
they cannot be derived or guessed from the behavior of each element. The phenomenon of “emergence”
is similar to the philosophical law on the “transfer of the quantity into the quality.” A full control of the
validation process therefore requires an attempt to account for this emergence phenomenon.

Impossibility Statements
For these reasons, the possibility to validate numerical models of natural phenomena, often endorsed either
implicitly or identified as reachable goals by natural scientists in their daily work, has been challenged;



quoting Oreskes et al. [8]: “Verification and validation of numerical models of natural systems is impos-
sible. This is because natural systems are never closed and because model results are always non-unique.”
According to this view, the impossibility of “verifying” or “validating” models is not limited to computer
models and codes but to all theories that rely necessarily on imperfectly measured data and auxiliary hy-
potheses, as Sterman et al. [9] put it: “Any theory is underdetermined and thus unverifiable, whether it
is embodied in a large-scale computer model or consists of the simplest equations.” Accordingly, many
uncertainties undermine the predictive reliability of any model of a complex natural system in advance of
its actual use.

Such “impossibility” statements are reminiscent of other “impossibility theorems.” Consider the math-
ematics of algorithmic complexity [10], which provides one approach to the study of complex systems.
Following reasoning related to that underpinning Godel’s incompleteness theorem, most complex systems
have been proved to be computationally irreducible, i.e., the only way to predict their evolution is to ac-
tually let them evolve in time. Accordingly, the future time evolution of most complex systems appears
inherently unpredictable. Such sweeping statements turn out to have basically no practical value. This
is because, in physics and other related sciences, one aims at predicting coarse-grained properties. Only
by ignoring most of molecular detail, for example, did researchers ever develop the laws of thermody-
namics, fluid dynamics and chemistry. Physics works and is not hampered by computational irreducibility
because we only ask for approximate answers at some coarse-grained level [11]. By developing exact
coarse-grained procedures on computationally irreducible cellular automata, Israeli and Goldenfeld [12]
have demonstrated that prediction may simply depend on finding the right level for describing the system.
Similarly, we propose that validation is possible, to some degree, as explained below.

Validation and Hypothesis Testing

We start by recognizing that validation is closely related to hypothesis testing and statistical significance
tests of mathematical statistics [13]. In hypothesis testing, a null Hg is compared with an alternative
hypothesis H1, in their ability to explain and fit data. The result of the test is either to “reject Hy in favor
of Hy” or “not reject Hy.” One never concludes “reject Hy,” or even “accept Hy or Hy.” If one concludes
“do not reject Hyp,” this does not necessarily mean that the null hypothesis is true, it only suggests that
there is not sufficient evidence against Hy in favor of Hy; rejecting the null hypothesis may suggest but
does not prove that the alternative hypothesis is true, only that it is better given the data. Thus, one
can never prove that an hypothesis is true, only that it is less effective in explaining the data than another
hypothesis. One can also conclude that an hypothesis /5 is not necessary and the other more parsimonious
hypothesis Hy should be favored. The alternative hypothesis H; is not rejected, strictly speaking, but can
be found unnecessary or redundant with respect to Hy. This is the situation when there are two (or several)
alternative hypotheses Hy and 1, which can be composite, nested, or non-nested (the technical difficulties
of hypothesis testing depends on these structures of the competing hypotheses [14]). This illuminates
the status of code comparison in verification and validation [15]. Viewed in this way, it is clear why
code comparison is not sufficient for validation since validation requires comparison with experiments and
several other steps described below. The analogy with hypothesis testing makes clear that code comparison
allows the selection of one code among several codes but does not help to conclude about the validity of a
given code or model when considered as a unique entity independently of other codes or models.

In the theory of hypothesis testing, there is a second class of tests, called “tests of significance,” in
which one considers a unique hypothesis H (model), and the alternative is “all the rest,” i.¢e., all hypotheses
that differ from Hy. In that case, the conclusion of a test can be the following: “this data sample does
not contradict the hypothesis Hy,” which is of course not the same as “the hypothesis Hy is true.” In
other words, a test of significance cannot “accept” an hypothesis, it can only fail to reject it because the
hypothesis is found sufficient at some confidence level for explaining the available data. Multiplying the
tests will not help in accepting Hy.

Since validation must at least contain hypothesis testing, this shows that statements like “verification



and validation of numerical models of natural systems is impossible” [8] are best rephrased in the language
of mathematical statistics [13]: the theory of statistical hypothesis testing has taught mathematical and
applied statisticians for decades that one can never prove an hypothesis or a model to be true. One can
only develop an increasing trust in it by subjecting it to more and more tests which “do not reject it.”
We attempt to formalize below how such trust can be built up to lead to validation viewed as an evolving
process.

Validation as a Constructive Iterative Process
In a standard exercise of model validation, one performs an experiment and, in parallel, runs the calcula-
tions with the available model/code. Then, a comparison between the measurements of the experiment and
the outputs of the model/code calculations is performed. This comparison uses some metrics controlled by
experimental feasibility, i.e., what can actually be measured. One then iterates by refining the model/code
until (admittedly subjective) satisfactory agreement is obtained. Then, another set of measurements is per-
formed, which is compared with the corresponding predictions of the model/code. If the agreement is still
satisfactory without modifying the model, this is considered progress in the validation of the model/code.
Iterating with experiments testing different features of the model/code corresponds to mimicking the pro-
cess of construction of a theory in Physics [16]. As the model/code is exposed to increasing scrutiny and
testing, the testers develop a better understanding of the reliability (and limitations) of the model/code in
predicting the outcome of new experimental and/or observational set-ups. This implies that “validation
activity should be organized like a project, with goals and requirements, a plan, resources, a schedule, and
a documented record” [6].

We thus propose to formulate the validation problem of a given model/code as an iterative construction
that embodies the often implicit process occurring in the minds of scientists:

1. One starts with an a priori trust quantified by the value V., in the potential value of the model/code.
This quantity captures the accumulated evidence thus far. If the model is new or the validation pro-
cess is just starting, take V.o = 1. As we will soon see, the absolute value of Vi, is unimportant
but its relative change is important.

2. An experiment is performed, the model/code is set-up to calculate what should be the outcome of
the experiment, and the comparison between these predictions and the actual measurements is made
either in model space or in observation space. The comparison requires a choice of metrics.

3. Ideally, the quality of the comparison between predictions and observations is formulated as a sta-
tistical test of significance in which an hypothesis (the model/code) is tested against the alternative,
which is “all the rest.”” Then, the formulation of the comparison will be either “the model/code is re-
jected” (it is not compatible with the data) or “the model/code is compatible with the data.” In order
to implement this statistical test, one needs to attribute a likelihood p(M |y,bs) or, more generally,
a metric-based “grade” that quantifies the quality of the comparison between the predictions of the
model M and observations y,ps. This grade is compared with the reference likelihood ¢ of “all the
rest.” Examples of implementations include the sign test and the tolerance interval methods [17]. In
many cases, one does not have the luxury of a likelihood; one has then to resort to more empirical
notations of how well the model explains crucial observations. In the most complex cases, these
notations can be binary (accepted or rejected).

4. The posterior value of the model/code is obtained according to a formula of the type [18]
Vposterior/vprior =F [p(M|yobs)7 q; Cnovel] . (1)

In this expression, Vjosterior 1S the posterior potential, or coefficient, of trust in the value of the
model/code after the comparison between the prediction of the model and the new observations



have been performed. By the action of F(- - -), Viosterior can be either larger or smaller than Vo
in the former case, the experimental test has increased our trust in the validity of the model/code;
in the later case, the experimental test has signaled problems with the model/code. One could call
Virior and Vjosterior the evolving “potential value of our trust” in the model/code or, paraphrasing
the theory of decision making in economics, the “utility” of the model/code [19].

The transformation from the potential value V.o of the model/code before the experimental test to
Vposterior after the test is embodied into the multiplier /7, which can be either larger than 1 (towards
validation) or smaller than 1 (towards invalidation). We postulate that /" depends on the grade p(M |yobs),
to be interpreted as proportional to the probability of the model M given the data y,ps. It is natural to
compare this probability with the reference likelihood ¢ that one or more of all other conceivable models
is compatible with the same data.

The factor F' depends also on a parameter cpove) that quantifies the importance of the test. In other
words, cpovel 1S @ measure of the impact of the experiment or of the observation, that is, how well the new
observation explores novel “dimensions” of the parameter and variable spaces of both the process and the
model that can reveal potential flaws. For instance, repeating the same observation twice does not teach
more on the model, except for the statistical improvement by noise reduction in the observational data
obtained by the increased sample size, which allows one to refine the grade p attributed to the model. In
this case, chovel —+ 0 and Viosterior — Vprior 11T€SpEctive of the value of p, since the new experiment is
a repetition of a past experiment and does not validate further the model/code. A fundamental challenge
is that the determination of ¢,y TEqUITES, in some sense, a pre-existing understanding of the physical
processes so that the value of a new experiment can be fully appreciated. In concrete situations, one has
only a limited understanding of the physical processes and the value of a new observation is only assessed
after a long learning process, after comparison with other observations and experiments. Providing an
a priori value for cyovel, as required in expression (1), remains a difficult and key step in the validation
process. This difficulty is similar to specifying the utility function in decision making [19].

One experimental test corresponds to a entire loop 1 — 4 transforming a given Viiior t0 @ Viosterior
according to (1). This Vjosterior becomes the new Vo, for the next test, which will transform it into
another Vj,osterior and so on, according to the following iteration process:
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After n validation loops, we end up with a posterior trust in the validation of the model given by
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where the product is time-ordered since the sequence of values for ¢/

o depend on preceding tests. Vali-
dation can be said to be asymptotically satisfied when the number of steps n and the final value p(:s)terior
are sufficiently high. This construction makes clear that there is no absolute validation, only a process that
may or may not converge. This product (3) expresses the assumption that successive observations give in-
dependent multipliers. This assumption keeps the procedure simple because determining the dependence
between different tests with respect to validation would be highly undetermined. We propose that it is
more convenient to measure the dependence through the single parameter cl(fovel quantifying the novelty of
the jth test with respect to those preceding it. In full generality, each new F’ factor should be a function of
all previous tests.

The loop 1 — 4 together with expression (1) are offered as an attempt to quantify the progression of
the validation process, so that eventually, when several approximately independent tests exploring different
features of the model/code and of the process have been performed, Vi, osterior has grown to a level at which
most experts will be satisfied and will believe in the validity of the model/code. This formulation has the



advantage of viewing the validation process as a convergence or divergence built on a succession of steps,
mimicking the construction of a theory of reality. Expression (3) embodies the progressive build-up of
trust in a model or theory. This formulation provides a formal setting for discussing the difficulties that
underlay the so-called impossibilities [8, 9] in validating a given model/code. Here, these difficulties are
not only partitioned but quantified:

o in the definition of “new” non-redundant experiments (parameter cpovel),

¢ in choosing the metrics and the corresponding statistical tests quantifying the comparison between
the model and the measurements of this experiment (leading to the likelihood ratio p/q), and

e in iterating the procedure so that the product of the gain/loss factors Viosterior/ Vprior Obtained after
each test eventually leads to a clear-cut conclusion after several tests.

This formulation makes clear why and how one is never fully convinced that validation has been obtained:
it is a matter of degree, of confidence level, of decision making, as in statistical testing. But, this formula-
tion helps in quantifying what new confidence (or distrust) is gained in a given model/code. It emphasizes
that validation is an ongoing process, similar to the never-ending construction of a theory of reality.

The general formulation proposed here in terms of iterated validation loops is intimately linked with
decision theory based on limited knowledge: the decision to “go ahead” and use the model is fundamen-
tally a decision problem based on the accumulated confidence embodied in Vjosterior- The “go/no-go”
decision must take into account conflicting requirements and compromise between different objectives.
Decision theory, created by the statistician Abraham Wald in the late forties, is based ultimately on game
theory [19, 20]. Wald [21] used the term loss function, which is the standard terminology used in mathe-
matical statistics. In mathematical economics, the opposite of the loss (or cost) function gives the concept
of the utility function, which quantifies (in a specific functional form) what is considered important and
robust in the fit of the model to the data.

Properties of the Multiplier of the Elementary Validation Step
The multiplier I [p(M |yobs), ¢; novel] should have the following properties:

1. If the statistical test(s) performed on the given observations is (are) passed at the reference level g,
then the posterior potential value is larger than the prior potential value: F' > 1 (resp. F' < 1) for
p > ¢ (resp. p < ¢), which can be written succinctly as In £/ In(p/q) > 0.

2. The larger the statistical significance of the passed test, the larger the posterior value. Hence

oF
— >0, “h
Ip

for a given ¢. There could be a saturation of the growth of F' for large p/q, which can be either
that F < oo as p/q — oo or of the form of a concavity requirement 3% F'/dp* < 0 for large p/q:
obtaining a quality of fit beyond the noise level should not be over-interpreted.

3. The larger the statistical level at which the test(s) performed on the given observationsis (are) passed,
the larger the impact of a “novel” experiment on the multiplier enhancing the prior into the posterior
potential value of the model/code: O F/dcpovel > 0 (tesp. < 0), for p > ¢ (resp. p < q).

The simplest form obeying these properties (not including the saturation of the growth of F) is

Cnovel
F [p(M|yobs)7 q; Cnovel] = (g) . )



This form provides an intuitive interpretation of the meaning of the experiment impact parameter cpoyel-
A bland evaluation of the novelty of a test would be ¢yl = 1, thus F' = p/q and the chain (3) reduces
to a product of normalized likelihoods, as in standard statistical tests. A value ¢yove] > 1 (tesp. < 1) for a
given experiment describes a nonlinear rapid (resp. slow) updating of our trust V' as a function of the grade
p/q of the model with respect to the observations. In particular, a large value of ¢;,oyel corresponds to the
case of “critical” tests. A famous example is the Michelson-Morley experiment for the Theory of Special
Relativity. For the Theory of General Relativity, it was the observation during the 1919 solar eclipse of the
bending of light rays from distant stars by the Sun’s mass and the anomalous precession of the perihelion
of Mercury’s orbit.
The alternative multiplier,

4
tanh (2 + %)
F [p(M|yobs)7 q; Cnovel] = d move 3 (6)
tanh (1 + Cnolvel)
is plotted in Fig. 1 as a function of p/q and c¢;,ovel. It emphasizes that F' saturates as a function of p/¢ and
Cnovel as either one or both of them grows large. A completely new experiment corresponds tO ¢jove] — OO
so that 1/cpovel = 0 and thus F tends to [tanh(p/q)/ tanh(1)]%, i.e., Vposterior/ Vprior is only determined
by the quality of the “fit” of the data by the model quantified by p/q. A finite ¢;,oye) implies that one already
takes a restrained view on the usefulness of the experiment since one limits the amplitude of the gain =
Vposterior/ Vprior, Whatever the quality of the fit of the data by the model. The exponent 4 in (6) has been
chosen so that the maximum confidence gain F is equal to 1 /(tanh(1))* & 3 in the best possible situation
of a completely new experiment (c,ove] = 00) and perfect fit (p/q — o). In contrast, the multiplier /' can
be arbitrarily small as p/¢ — 0 even if the novelty of the test is high (¢,ovel — ©0). For a finite novelty
Cnovel, @ test that fails the model miserably (p/q = 0) does not necessarily reject the model completely:
unlike with the expression in (5), F’ remains > 0. Indeed, if the novelty c;ove] 1s small, the worst-case
multiplier (attained for p/¢ = 0) is [tanh (1/cpover) / tanh (1 4 (1/Cnove1))]4 ~ 1 — 6.9 2/covel which
is only slightly less than unity if ¢,,,ve] < 1. In short, this formulation does not heavily weight unimportant
tests.

In the framework of decision theory, (1) with one of the specific expressions in (5) or (6) provides a
parametric form for the utility or decision “function” of the decision maker. It is clear that many other
forms of the utility function can be used, however, with the constraint of keeping the salient features of
expression (1) with (5) or (6), in terms of the impact of a new test given past tests, and the quality of the
comparison between the model predictions and the data.

Practical Guidelines for Determining p and ¢yl
These two crucial elements of a validation step are conditioned by four basic problems, on which one can
exert at least partial control:

1. How to model? This addresses model construction and involves the structure of the elementary
contributions, the hierarchical organization of the routines, and requires dealing with uncertainties
and fuzziness.

2. What to measure? This relates to the nature of c,,vel: ideally, following Palmer et al. [22], one
should target adaptively the observations to “sensitive” parts of the system. Targeting observations
could be directed by the desire to access the most “relevant” information as well as to get information
that is the most reliable, i.e., which is contaminated by the smallest errors. This is also the stance
of Oberkampf and Trucano [23]: “A validation experiment is conducted for the primary purpose
of determining the validity, or predictive accuracy, of a computational modeling and simulation
capability. In other words, a validation experiment is designed, executed, and analyzed for the



purpose of quantitatively determining the ability of a mathematical model and its embodiment in
a computer code to simulate a well-characterized physical process.” In practice, ¢yovel 1S chosen
to represent the best-guess estimate of the importance of the new observation and the degree of
“surprise” it brings to the validation step. [24]

3. How to measure? For given measurements or experiments, the problem is to find the “optimal”
metric or cost function (involved in the quality-of-fit measure p) for the intended use of the model.
The notion of optimality needs to be defined. It could capture a compromise between fitting best the
“important” features of the data (what is “important” may be decided on the basis of previous studies
and understanding or other processes, or programmatic concerns), and minimizing the extraction of
spurious information from noise. This requires one to have a precise idea of the statistical properties
of the noise. If such knowledge is not available, the cost function should be chosen accordingly. The
choice of the “cost function” involves the choice of how to look at the data. For instance, one may
want to expand the measurements at multiple scales using wavelet decompositions and compare the
prediction and observations scale by scale, or in terms of multifractal spectra of the physical fields
estimated from these wavelet decompositions [25] or from other methods. The general idea here is
that, given complex observation fields, it is appropriate to unfold the data on a variety of “metrics,”
which can then be used in the comparison between observations and model predictions: the question
is then how well is the model/code able to reproduce the salient multiscale and multifractal properties
derived from the observations? The physics of turbulent fields and of complex systems have offered
many such new tools with which to unfold complex fields according to different statistics. Each
of these statistics offers a metric to compare observations with model predictions and is associated
with a cost function focusing on a particular feature of the process. Since these metrics are derived
from the understanding that turbulent fields can be analyzed using these metrics that reveal strong
constraints in their organization, these metrics can justifiably be called “physics-based.” In practice,
p, and eventually p/¢, has to be inferred as an estimate of the degree of matching between the
model/code output and the observation. This can be done following the concept of fuzzy logic in
which one replaces the yes/no pass test by a more gradual quantification of matching [26]. We thus
concur with Ref. [27], while our general methodology goes beyond.

4. How 1o interpret the results? This question relates to defining the test and the reference probability
level ¢ that any other model (than the one under scrutiny) can explain the data. The interpretation
of the results should aim at detecting the “dimensions” that are missing, mispecified or erroneous
in the model. What tests can be used to betray the existence of hidden degrees of freedom and/or
dimensions? This is the hardest problem. It can sometimes find an elegant solution when a given
model is embedded in a more general one. Then, the limitation of the “smaller” model becomes
clear from the vantage of the more general model.

We now illustrate our algorithmic approach to model validation using the historical development of quan-
tum mechanics and four examples based on the authors’ research activities. In these examples, we will use
the form (6) and consider three finite values: ¢,ove] = 1 (marginally useful new test), ¢,ove] = 10 (substan-
tially new test), and cpove] = 100 (important new test). When a likelihood test is not available, we propose
to use three possible marks: p/q = 0.1 (poor fit), p/q = 1 (marginally good fit), and p/q = 10 (good fit).
Extreme values (¢pove OF p/q are O or co) have already been discussed. Due to limited experience with
this approach, we propose these ad hoc values in the following examples of its application.

Quantum Mechanics

Quantum mechanics (QM) offer a vivid incarnation of how a model can turn progressively into a theory
held “true” by almost all physicists. Since its birth, QM has been tested again and again because it presents
aview of “reality” that is shockingly different from the classical view experienced at the macroscopic scale.



QM prescriptions and predictions often go against classical intuition. Nevertheless, we can state that, by a
long and thorough process of verified predictions of QM in experiments, fueled by the imaginative set-up of
paradoxes, QM has been validated as a correct description of nature. It is fair to say that the overwhelming
majority of physicists have developed a strong trust in the validity of QM. That is, if someone comes up
with a new test based on a new paradox, for instance, most physicists would bet that QM will come up
with the right answer with a very high probability. It is thus by the on-going testing and the compatibility
of the prediction of QM with the observations that QM has been validated. As a consequence, one can use
it with strong confidence to make predictions in novel directions. This is ideally the situation one would
like to attain for the problem of validation of models and of codes discussed below. We now give a very
partial list of selected tests that established the trust of physicists in Quantum Mechanics.

1.

Pauli’s exclusion principle states that no two identical fermions (particles with non-interger values of
spin) may occupy the same quantum state simultaneously [28]. It is one of the most important prin-
ciples in physics, primarily because the three types of particle from which ordinary matter is made,
electrons, protons, and neutrons, are all subject to it. With ¢,,ve] = 100 and perfect verification in
numerous experiments (p/q = o), this leads to F’ 1) =2.9.

The EPR paradox [29] was a thought experiment designed to prove that quantum mechanics was
hopelessly flawed: according to QM, a measurement performed on one part of a quantum system can
have an instantaneous effect on the result of a measurement performed on another part, regardless of
the distance separating the two parts. Bell’s theorem [30] showed that quantum mechanics predicted
stronger statistical correlations between entangled particles than the so-called local realistic theory
with hidden variables. The importance of this prediction requires ¢yove] = 100 at the very minimum.
The QM prediction turned out to be correct, winning over the hidden-variables theories [31, 32]
(p/q = c0), leading again to F'(?) = 2.9.

The Aharonov-Bohm effect predicts that a magnetic field can influence an electron that, strictly
speaking, is located completely beyond the field’s range, again an impossibility according to non-
quantum theories (¢yovel = 100), The Aharonov-Bohm oscillations were observed in ordinary (i.e.,
nonsuperconducting) metallic rings, showing that electrons can maintain quantum mechanical phase
coherence in ordinary materials [33]. This yields p/¢ = oo and thus F’ (3) = 2.9 yet again.

The Josephson effect provides a macroscopic incarnation of quantum effects in which two super-
conductors are predicted to preserve their long-range order across an insulating barrier, for instance,
leading to rapid alternating currents when a steady voltage is applied accross the superconduc-
tors. The novelty of this effect again warrants c¢,,ve] = 100 and the numerous verifications and
applications (for instance in SQUIDs: Superconducting QUantum Interference Devices) argues for
p/q = oo and thus F'() = 2.9, as usual.

The prediction of possible collapse of a gas of atoms at low temperature into a single quantum state is
known as Bose-Einstein (BE) condensation, again so much against classical intuition (¢ ove] = 100).
Atoms are indeed bosons (particles with integer values of spin) which are not subjected to the Pauli
exclusion principle evoked in above test #1 of QM. The first such BE condensate was produced using
a gas of rubidium atoms cooled to 1.7 - 1077 K [34] (p/q = oc), leading once more to F® =209

There have been several attempts to develop a paradox-free nonlinear QM theory, in the hope of
eliminating Schrddinger’s cat paradox, among other embarrassments. The nonlinear QM predictions
diverge from those of orthodox quantum physics, albeit subtly. For instance, if a neutron impinges
on two slits, an interference pattern appears, which should, however, disappear if the measurement
is made far enough away (chovel = 100). Experiment tests of the neutron prediction rejected the
nonlinear version in favor of the standard QM [35] (p/q = o0), leading to F 6) =2.9.



7. In addition, measurements at the National Bureau of Standards in Boulder, CO, on frequency stan-
dards have been shown to set limits of order 102! on the fraction of the energy of the rf transi-
tion in ?Be ions that could be due to nonlinear corrections to quantum mechanics [36]. We assign
Cnovel = 10, with p/¢q = 10), to this result, leading to F(7) = 2.4. Although less than F(1~5) this is
still meant to be an impressive score.

Combining the multipliers according to (3) leads to v / A 1400, which is of course only a

posterior/ ¥ prior
lower limit given the many other validation tests not mentioned here. Tests of QM are ongoing [37].

Four Further Examples Drawn from the Authors’ Research Activities

The Olami-Feder-Christensen (OFC) sand-pile model of earthquakes. This is perhaps the simplest sand-
pile model of self-organized criticality, which exhibits a phenomenology resembling real seismicity [38].
To validate it, we examine the properties and prediction of the model that can be compared with real
seismicity, together with our assessment of their c¢;,ve] and quality-of-fit. We are careful to state these
properties in an ordered way, as specified in the above sequences (2)—(3).

1. The statistical physics community recognized as an important step in the development of a theory of
earthquakes the discovery of the OFC model: without a conservation law but nevertheless exhibiting
a power law distribution of avalanche sizes resembling the Gutenberg-Richter (GR) law [38]. On
the other hand, many other models with different mechanisms can explain observed power law
distributions [39]. We thus attribute only ¢;ove] = 10 to this evidence. Because the power law
distribution obtained by the model is of excellent quality for a certain parameter value (o = 0.2),
we formally take p/q = oo (perfect fit). Expression (6) then gives F) =24

2. Now turning to foreshocks and aftershocks, exponents for the inverse and direct Omori laws are
smaller than for real seismicity [40]. There are two aspects in this prediction of the model: (i) the
finding of foreshocks and aftershocks with similar qualitative properties, and (ii) their inverse and
direct Omori rates. The first aspect, deserves a large c¢,,ve] = 100 as the observation of foreshocks
and aftershocks came as a rather big surprise in such sand-pile models [41]. The clustering in time
and space of the foreshocks and aftershocks are qualitatively similar to real seismicity [40], which
warrants p/q = 10, and thus F’ (2¢) = 2.9 The second aspect is secondary compared with the
first one (cpovel = 1). Since the exponents are only qualitatively reproduced (but with no formal
likelihood test available), we take p/¢ = 0.1. This leads to F’ (26) = 0.47.

3. Scaling of the number of aftershocks with the main shock size (productivity law) [40]: ¢cpovel = 10
as this observation is rather new but not completely independent of the Omori law. The fit is good
so we grant a grade p/q = 10 leading to F®) =24,

4. Power law increase of the number of foreshocks with the mainshock size [40]: this is not observed in
real seismicity, probably because this property is absent or perhaps due to a lack of quality data. This
test is therefore not very selective (cpovel = 1) and the large uncertainties suggest a grade p/q = 1
(to reflect the different viewpoints on the absence of effect in real data) leading to F’ 1) =1 (neutral
test).

5. Most aftershocks are found to nucleate at “asperities” located on the mainshock rupture plane or
on the boundary of the avalanche, in agreement with observations [40]: ¢povel = 10 and p/q = 10
leading to F'®) = 2.4.

6. Earthquakes cluster on spatially localized geometrical structures, known as faults. This property is
arguably central to seismicity physics (chovel = 100), but absolutely not reproduced by the OFC
model (p/q = 0.1). This leads to F(6) = 4.10~%.



Combining the multipliers according to (3) up to test #5 leads to Vpostenor/ prlor = 18.8, suggesting
that the OFC model is validated as a useful model of the statistical properties of seismic catalogs, at least
with respect to the properties which have been examined in these first six tests. Adding the crucial last
test strongly fails the model since Vpostenor/ prlor = 0.0075. The model can not be used as a realistic

predictor of seismicity. It can nevertheless be useful for the study of certain statistical properties.

The multifractal random walk (MRW) as a model of financial returns. We now consider the MRW model
introduced as a random walk with stochastic “volatility” endowed with exact multifractal properties [42],
which has been proposed as a model of financial time series. Among the documented facts about financial
time series, we have the absence of correlation between lagged returns, the long-range correlation of lagged
volatilities, and the observed multifractality. These can not be taken as validation tests of the model since
they are the observations that motivated the introduction of the MRW. These observations thus constitute
references or benchmarks against which new tests must be compared. The new properties and prediction
of the MRW model that can be compared with real financial return time series are the following.

1. The probability density distributions (PDF) of returns at different time scales: the MRW exhibits
the remarkable property of accounting quantitatively for the transition from fatter-than-exponential
PDFs at small time scales to approximately Gaussian PDFs at large time scales. But, because the
MRW is intrinsically a model developed as the continuous limit of a cascade across scales, this
is perhaps not very surprising. We thus rate the novelty of this observation with ¢4y = 10. In
absence of formal likelihood tests on the PDFs, we take p/q = 10 to reflect the apparent excellent
fits of the data at multiple scales, leading to F(1) = 2.4,

2. Different response functions of the price volatility to large external shocks compared with endoge-
neous shocks, which are well-confirmed quantitatively by observations on a hierarchy of volatility
shocks [43]. This prediction has been verified to hold with remarkable accuracy without any ad-
justable parameters (i.e., the parameters were adjusted previously and fixed before the new test).
We thus rate the novelty of this test with a high ¢,,ve1 = 100 and the agreement is quantified by
p/q = 10, leading to F(?) = 2.9.

3. The sharp-peak/flat-trough pattern of price peaks [44] as well as accelerated speculative bubbles
preceding crashes [45] is not captured by the MRW. In view of the debated importance of such
patterns, we rate these observations with ¢,ove] = 1 and p/q = 0.1, leading to F’ (3) = 0.47.

4. The leverage effect and volatility dependence on past volatility and returns (see [46] and references
therein). These features are not captured by the MRW at all. We rate ¢,ove] = 10 and the lack of
agreement is quantified by p/q = 0.1, leading to F® =0.0037.

Combining the multipliers according to (3) leads toV.

posterlor/ pI‘lOI‘

= 0.012, rejecting the model. But

if we stop the validation steps at Vpostenor/ prlor = 7, we obtain a clear validation signal. The two
additional tests fail the MRW because the observed effects involve mechanisms that are absent in it. Here,
we should conclude that the MRW is a useful model that is validated with respect to certain properties
on the memory of volatility but is not validated for a fully faithful description of the stock market returns.
These mechanisms can be actually incorporated into extensions of the MRW, corresponding to the addition
of new dimensions lacking in the MRW. If we had used the long-range correlation of lagged volatilities

and the observed multifractality (each with parameters cnovel = 10 and p/q = 10) as tests # 1 and #0, I’
would have gained a factor 2.4> = 5.9, changing posterlor/ = 0.012 into V. = 0.07,

pI‘lOI‘ posterlor/ pI‘lOI‘
still far from sufficient to validate the model

An anomalous diffusion model for solar photons in cloudy atmospheres. To properly model climate dynam-
ics, it is important to narrow the significant uncertainty associated with clouds. In particular, estimation



of the radiation budget in the presence of clouds needs to be improved since current operational models
for the most part ignore all variability below the scale of the climate model’s grid (a few 100 km). So a
considerable effort has been expended to derive more realistic mean-field radiative transfer models [47],
mostly by considering only the one-point variability of clouds (that is, irrespective of their actual struc-
ture). However, it has been widely recognized that the Earth’s cloudiness is fractal over a wide range of
scales [48]. This is the motivation for modeling the paths of solar photons at non-absorbing wavelengths
in the cloudy atmosphere as convoluted Lévy walks [39], which are characterized by frequent small steps
(inside clouds) and occasional large jumps (between clouds). These paths start downward at the top of
the highest clouds and end in escape to space or in absorption at the surface. In sharp contrast with most
other mean-field models for solar radiative transfer, this diffusion model with anomalous scaling can be
subjected to a battery of observational tests.

1. The original goal of this phenomenological model, which accounts for the clustering of cloud water
droplets into broken and/or multi-layered cloudiness, was to predict the increase in steady-state
flux transmitted to the surface compared to what would filter through that same amount of water
in a single unbroken cloud layer [49]. This property is common to all mean-field photon transport
models that do anything at all about unresolved variability [47], so we can only assign ¢, ove] = 10
to this test and, given that all models in this class are successful, we have to take p/¢q = 1, hence
F() = 1. The outcome of this first test is neutral.

2. The first real test for this model occurred when it became possible to accurately estimate the mean
total path of solar photons that reach the surface. This breakthrough was enabled by access to
spectroscopy at medium (high) resolution of oxygen bands (lines) [50, 51]. Along with simultaneous
estimation of cloud optical depth (basically, column-integrated water [kg/m?] times the average
scattering cross-section per kg), the observed trends were explained only by the new model in spite
of the relatively large instrumental error bars. So we assign ¢yove] = 100 to this highly discriminating
test and p/q = 10 (even though the other models were not in a position to compete), hence F' (2) =
2.9.

3. Another test was proposed using time-dependent photon transport with a source near the surface
(cloud-to-ground lightning) and a detector in space (the DOE FORTE satellite) [52]. The quantity of
interest is the observed delay of the light pulse (due to multiple scattering in the cloud system) with
respect to the radio-frequency pulse (which travels in a straight line). There was no simultaneous
estimate of cloud optical depth, so assumptions had to be made, informed by the fact that storm
clouds are at once thick and dense. Because of this lack of an independent measurement, we assign
only ¢povel = 10 to the observation and p/q = 1 to the model performance since this is only about
the finite horizontal extent of the cloud (one could exclude only uniform “plane-parallel” clouds).
So, again we obtain F(®) = 1 for an interesting but presently neutral test that needs to be refined.

4. Min et al. [53] developed an oxygen-line spectrometer with sufficient resolution to estimate not just
the mean path but also its root-mean-square (RMS) value. They found the prediction by Davis and
Marshak [54] for normal diffusion to be an extreme (envelop) case for the empirical scatter plot of
mean vs. RMS path, and this is indicative that the anomalous diffusion model will cover the bulk
of the data. Because of some overlap with a previous item, we assign ¢pove; = 10 and p/q = 10
for the model performance (since the anomalous diffusion model had not yet made a prediction for
the RMS path, but the other models have yet to make one for the mean path). We therefore obtain
P =24,

5. Using similar data but a different normalization than Min et al.’s, more amenable to model testing,
Scholl et al. [55] observed that the RMS-to-mean ratio for solar photon path is essentially constant
whether the diffusion is normal or anomalous. This is a remarkable empirical finding to which we



assign cnovel = 100. The new mean- and RMS-path data was explained by Scholl et al. by creating
an ad hoc hybrid between the normal diffusion theory (which made a prediction for the RMS path)
and the anomalous theory (which did not). This significant modification of the basic model means
that we are in principle back to validation step #1 with the new model. However, this exercise
uncovered something quite telling about the original anomalous diffusion model, namely, that its
simple asymptotic (large optical depth) form used in all the above tests is inappropriate: for typical
cloud covers, the pre-asymptotic terms computed explicitly for the normal diffusion case prove to
be important irrespective of whether the diffusion is normal or not. Consequently, in its original
form (a simple scaling law for the mean path with respect to cloud thickness and optical depth), the
anomalous diffusion model fails to reproduce the new data even for the mean path. (This means that
previous fits yielded “effective” anomaly parameters and were misleading if taken literally.) So we
assign p/q = 0.1 at best for the original model, hence F®) =0.0004.

Thus, Végs)terlor/ pn)or = 0 003, a fatal blow for the anomalous diffusion in its simple asymptotic form,
even though V. postenor / prlor = 7.0 which would have been interpreted as close to a convincing validation.

This is of course not the end of the story. The original model has already spawned Scholl et al’s empirical
hybrid and there is a formalism based on integral (in fact, pseudo-differential) operators that extends
the anomalous diffusion model to pre-asymptotic regimes [56]. More recently, a model for anomalous
transport (i.e., where angular details matter) has been proposed that fits all of the new oxygen spectroscopy
results [57].

In summary, the first and simplest incarnation of the anomalous diffusion model for solar photon trans-
port ran its course and demonstrated the power of oxygen-line spectroscopy as a test for the perfomance
of solar radiative transfer models required in climate modeling for large-scale average properties. Even-
tually, new and interesting tests will become feasible when we obtain dedicated oxygen-line spectroscopy
from space (with NASA’s Orbiting Carbon Observatory mission planned for launch in 2007). Indeed, we
already know that the asymptotic scaling for reflected photon paths [58] is different from their transmitted
counterparts [54] in both mean and RMS.

A computational fluid dynamics (CFD) model for shock-induced mixing and shock-tube tests. So far, our
examples of models for complex phenomena have hailed from quantum and statistical physics. In the latter
case, they are stochastic models composed of: (1) simple code (hence rather trivial verification procedures)
to generate realizations, and (2) analytical expressions for the ensemble-average properties (that are used
in the above validation exercises). We now turn to gas dynamics codes which have a broad range of
applications, from astrophysical and geophysical flow simulation to the design and performance analysis
of engineering systems. Specifically, we discuss the validation of the (extensively verified) “Cuervo”
code developed at Los Alamos National Laboratory, implementing compressible Euler equations [59]. A
standard test case involves the Richtmyer-Meshkov (RM) instability [60, 61], which arises when a density
gradient in a fluid is subjected to an impulsive acceleration, e.g., due to passage of a shock wave. Evolution
of the RM instability is nonlinear and hydrodynamically complex and hence defines an excellent problem-
space to assess CFD code performance.

In the series of shock-tube experiments described in [62], RM dynamics are realized by preparing one
or more cylinders with approximately identical axisymmetric Gaussian concentration profiles of dense
sulfur hexaflouride (SF¢) in air. This (or these) vertical “gas cylinder(s)” is (are) subjected to a weak shock
—Mach number ~1.2— propagating horizontally. The ensuing dynamics are largely governed by the
mismatch of the density gradient between the gases (with the density of SFg approximately five times that
of air) and the pressure gradient through the shock wave; this mismatch acts as the source for baroclinic
vorticity generation. The visualization of the density field is obtained using a planar laser-induced fluo-
rescence (PLIF) technique, which provides high-resolution quantitative concentration measurements. The
velocity field is diagnosed using particle image velocimetry (PIV), based on correlation measurements of



small-scale particles that are lightly seeded in the initial flow field. Careful post-processing of images from
130 ps to 1000 us after shock passage yields planar concentration and velocity with error bars.

1. The RM flow is dominated at early times by a vortex pair (per gas cylinder). Later, secondary
instabilities rapidly transition the flow to a mixed state. We rate c¢;,,ve] = 10 for the observations of
these two instabilities. The Cuervo code correctly captures these two instabilities, best observed and
modeled with a single cylinder. At this qualitative level, we rate p/q = 10 (good fit), which leads to
F) =24,

2. Older data for two-cylinder experiments acquired with a fog-based technique (rather than PLIF)
showed two separated spirals associated with the primary instability, but the Cuervo code predicted
the existence of a material bridge. This previously unobserved connection was experimentally
diagnosed with the improved observational technique. Using ¢povel = 10 and p/g = 10 yields
=24,

3. The evolution of the total power as a function of time offers another useful metric. The numerical
simulation quantitatively accounts for the exponential growth of the power with time, within the
experimental error bars. Using ¢povel = 10 and p/q = 10 yields F) = 2.4.

4. The concentration power spectrum as a function of wavenumber for different times provides another
way (in the Fourier domain) to present the information of the hierarchy of structures already visual-
ized in physical space (cpovel = 1). The Cuervo code correctly accounts for the low wavenumber part
of the spectrum but underestimates the high wavenumber part (beyond the deterministic-stochastic
transition wavenumber) by a factor 2 to 5. We capture this by setting p/q = 0.1, which yields
F@ =047,

Combining the multipliers according to (3) leads to Vpostenor/ prlor = 6.5, a significant gain, but still
not sufficient to fully validate the Cuervo code. Intricate experiments with three gas cylinders have been

performed [63] and others are currently under way to further stress CFD models.

These examples illustrate the utility of representing the validation process as a succession of steps,
each of them characterized by the two parameters ¢ovel and p/g. The determination of ¢;ove] requires
expert judgment and that of p/q a careful statistical analysis, which is beyond the scope of the present
report (see Ref. [27] for a detailed case study). The parameter ¢ is ideally imposed as a confidence level,
say 95% or 99% as in standard statistical tests. In practice, it may depend on the experimental test and
requires a case-by-case examination.

The uncertainties of ¢;,qve and of p/g need to be assessed. Indeed, different statistical estimations or
metrics may yield different p/q¢’s and different experts will likely rate differently the novelty cpovel Of a

new test. As a result, the trust gain V. postenor / prlor after n tests necessarily has a range of possible values
that grows geometrically with n. In certain cases, a drastic difference can be obtained by a change of
Cnovel: fOr instance, if instead of attributing cy,ove] = 100 to the sixth OFC test, we put ¢jovel = 10 (resp.
1) while keeping p/q = 0.1, F® is changed from 4 - 10~* to 4 - 102 (resp. 0.47). The trust gain then

becomes Vp(;)tenor/ prior = = 0.07 (resp. ~ 9). For the sixth OFC test, cyove] = 1 is arguably unrealistic,

given the importance of faults in seismology. The two possible choices ¢jovel = 100 and ¢ove] = 10
then give similar conclusions on the invalidation of the OFC model. In our examples, p:;;rlor /V prlor
provides a qualitatively robust measure of the gain in trust after n steps; this robustness has been built-in
by imposing a coarse-grained quality to p/q and ¢ ovel-

Finally, we remark that the proposed form for the multiplier (6) contains an important asymmetry
between gains and losses: the failure to a single test with strong novelty and significance (as, e.g., for
the localized seismicity on faults in the case of the OFC model and for the leverage effect in the case of

the MRW model) cannot be compensated by the success of all the other tests combined. In other words,



a single test is enough to reject a model. This embodies the common lore that reputation gain is a slow
process requiring constancy and tenacity, while its loss can occur suddenly with one single failure and is
difficult to re-establish. We believe that the same applies to the build-up of trust in and, thus, validation of
a model.

Summary

The validation of numerical simulations continues to become more important as computational power
grows and the complexity of modeled systems increases. We have proposed an iterative, constructive
approach to validation using quantitative measures and expert knowledge to assess the relative state of
validation of a model instantiated in a computer code. In this approach, the increase/decrease in validation
is mediated through a function that incorporates the results of the model vis-a-vis the experiment together
with a measure of the impact of that experiment on the validation process. While this function is not
uniquely specified, it is not arbitrary: certain asymptotic trends, consistent with heuristically plausible be-
havior, must be observed. In five fundamentally different examples, we have illustrated how this approach
might apply to a validation process for physics or engineering models. We believe that the multiplicative
decomposition of trust gains or losses (given in Eq. 3), using a suitable functional prescription (such as Eq.
6), provides a reasoned and principled description of the key elements —and fundamental limitations —
of validation. It should be equally applicable to biological and social sciences, especially since it is built
upon the decision-making processes of the latter.
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Figure 1: The multiplier defined by (6) is plotted as a function of p/q and ¢, yel-



